ROD DSP software

ATLAS SCT and pixel off-detector electronics PDR
31 July, 2000

Damon Fasching
The University of Wisconsin, Madison

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

ROD crate software

e Much of this talk is distilled from the “protocol document.” (references at the
end of presentation)

e Code is written according to “Suggested coding rules for SCT and Pixel ROD
software” (J. Hill, based on “C++ Coding Standard Specification” adopted by
ATLAS online).

e The ROD operating model is similar to that of the PLL. It will operate as a list
processor, driven by lists of “primitive” commands downloaded from a VME
host processor.

e An optimal set of primitives should

— be a small number of commands which
— allow a great deal of flexibility while
— requiring few modifications or additions.

e Because the list processor on the ROD is a DSP, the communication protocols
for exchange of information are more sophisticated.
e For each primitive, there is a corresponding function in the DSP code.

e The host has DMA access to the entire memory space of the DSP. Information
IS exchanged via buffers in the master DSP SDRAM (32 MByte). There are
buffers set aside for primitive lists, reply data, error messages, etc.

Damon Fasching, The University of Wisconsin, Madison 2

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

ROD crate software
e There are two types of communication:

1. transfer of primitive lists downstream and reply data upstream (data buffers)
2. reporting error and information messages upstream (text buffers)

e Both protocols are implemented as state machines. Handshake bits in ded-
icated communication registers drive the associated state machine and also
Indicate its state.

— command register: RW from VME, R from ROD
— status register: RW from ROD, R from host

e At any time, a message may arrive from the host or one of the slave DSPs
which initiates an action by the master. The masterDSP executes a loop which
includes a call to each state machine. The state machine then executes an
action depending on its state and the current conditions.

e Protocols at the host-masterDSP interface and masterDSP-slaveDSP interface
are identical. Each slave also executes a polling loop and may receive mes-
sages from upstream which initiate actions.

= Now a look at the code and protocols from the outside in.

Damon Fasching, The University of Wisconsin, Madison 3

UOSIPRIA ‘UISUOISIMA JO AlsIaniun ayl ‘Buiydose uoweq

listLength

listIndex List header
numPrims

primlLength

primllndex } header
primlld L
orimibodyl primitive 1
primlbody2 } body(opt)
primlbodyn

prim2L ength

prim2l ndex } header
prim2id .
orim2body1 primitive 2
prim2body?2 } body(opt)
prim2bodyn

primNL engt

primNIndex } header
primNId C ..
orimNBody1 primitive N
primNBody?2 }
primNBodyn hady(opt)
listLength _ _
checksum List trailer

Primitivelist for mat

snjels alem}jos 4Sd dod

0002 AINC T€ ‘YAd S21U0I193|3 10103818pP-H0 |axid pue | JS SY 11V

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

main routine in master DSP (so far only state machine calls)

mai n() {
SINT32 error, returnCode;
U NT32 t xt Buf f Loop;

error = initialize();
i f (error < 0) {
addError (& eturnCode, error, "main", "initialize", _FILE , _LINE);
}
set SRRunni ng(1);
while(l) {
error = inListState(); [* primtive list state machine */
if (error < 0) {
addError (& eturnCode, error, "main", "inListState", _FILE , LINE);
}
for (txtBuffLoop = 0; txtBufflLoop < N TXT_BUFFS; ++txtBuffLoop) {
error = txtBuffStateMachine(txtBuffLoop); /* text buffer state nmachine */
i f (error < 0) {
addError (& eturnCode, error, "main", "txtBuffState", _FILE , LINE);
}
}

}
exi t (SUCCESS) ;

Damon Fasching, The University of Wisconsin, Madison 5

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

Primitive list passing protocol; host to masterDSP and masterDSP to slaveDSP

host / inListBuff outL istBuff HPI Contorol VM Ecommand RODStatus master DSP/
master DSP (SDRAM) (SDRAM) (target DSP) Register Register slaveDSP
! ! ! (RRI FPGA/ (RRI FPGA/
| | slaveDSP mbox) slaveDSP mbox)
| LN
I " " " ro " "
write(HPIA) ! | o | L L
T gl I
write(HPIC) _ " _ RN
mm:%:_._mcow_ " | = " p
poll for dspAck=0 | _ " _r" I
: i
setBit(inListRdy) " > ey _
" F Ll ! !poll for inListRdy=1
| L1 setBit(busy)
" 1l _\". write(listindex)
| |
" _ﬁ"._ _mmﬁm_zmxmoc::@v
| P iwrite(primindex)
I ! T i Execute
- = © || write(outList) Primitive(s
o]

clrBit(executing)
|
1w SetBit(dspAck)

R

poll for inListRdy=0

poll for dspAck=1;[read outListRdy

clrBit(inListRdy)
|
I

if outListRdy=1; wtite(HPIC)
T
if outListRdy=1; write(HPIA)

sefBit(outListRdy)0 or 1
‘_ T

|

|

|

|

|

|

T

|

|

|

|

|

|

|

|

I |

A - _____-—__F-C

| |
| |
| |
if outListRdy=1; gét(outList) =° L

" | 111 | o ClrBit(dspAck)

| " ' 11 clrBit(busy)

_ I Pt _

processor states.executingl___] set handshake bit
polling check handshake bit

Damon Fasching, The University of Wisconsin, Madison 6

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

“booted/initialized> o .
InListStateM achine
_ U_l m readCRInListRdy(&inListRdy)
>| setSRBusy(1)
@ | error=initPrimList(&index)
S B | setSRPrimListi ndex(index)
.%r% SO E | if(error<0) o -
Y O&yﬂ@f = | addError(&retVal,error,"inListState" " initPrimList",
LR _FILE_, LINE_)
NI,) .
5N %mo @JJ /v/o/v S
S &(L O/wfo S A
x Z0\> ON 4
% KA NG
£ P %,O \\@ %) readCRAbort(& abort)
mm & 9 read CRPause(& pause)
b @ if(done || FATAL (retval) || abort) EXEC if(!abort & & : _omc.wmv
.m setSROutL istRdy(output) error=execPrim(&index,
= setSRExecuting(0) &done,
o e et SRDspAck(1) | & output)
5 %, A5 if (error < 0) addError(...)
B N WP AP setSRPrimlndex(index)
Yo 6J /x/ >
AN .xf/o £ 0% «.UA%
KoK, oo
ST S s
ORI ey
r@@m\\.&ﬁ
o 297
N
% readCRADbort(& abort)
read CRPause(& pause)

Damon Fasching, The University of Wisconsin, Madison 7

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

primitive execution
e Now some implementation details of the primitive list handler.

1. primParams.h

— Synopsis: Defines prototypes of primitive functions, structure tags for primitive data and
reply data, and primitive ids which are used to index the array of pointers to primitive
functions.

2. primFuncts.c

— Synopsis: Contains primitive functions and the initialization routine for the array to point-
ers of these functions.

3. inList.c

— Synopsis: Contains functions which manage incoming primitive lists and outgoing reply
lists, including data integrity and consistency checks. The routines in this file are one
level below the primitive list state machine.

e We will look at examples from the above files which illustrate the structure of
the primitive handler.

Damon Fasching, The University of Wisconsin, Madison 8

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

primitive execution

e primParams.h (header file on host and DSP)

/* primtive ids and structure tags */

#if defined(l _AM ROD CONTROLLER DSP) || defined(l_AM HOST)
#defi ne ECHO 0
#defi ne MEMORY_TEST (1 + (ECHO)

struct MEMIN {
U NT8 *start Address;
U NT8 *endAddr ess;
U NT32 nunReps;
};
struct MEM QUT {

U NT32 nuntrrors;
M.

#define ANOTHER PRIM TIVE (1 + (MEMORY_TEST))
#define NUMPRIMTIVES (1 + (ANOTHER PRI M TI VE))

/* primtive function prototypes */
#if ldefined(l_AM HOST)

i nt echo(struct PRI M DATA *);
I nt menoryTest (struct PRI M DATA *);
int anotherPrimtive(struct PRI M DATA *);

#endi f
#endi f

Damon Fasching, The University of Wisconsin, Madison 9

ROD DSP software status

ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

I nt

I nt

e primFuncts.c (primitive functions)
voi d assignFunctPtrs(int (**prinfFunction)(struct PRI MDATA *)) {
pri nmFuncti on[ECHO = echo;

pri nmFunct i on[MEMORY_TEST]
pri mFuncti on[ANOTHER PRI M TI VE]

nmenoryTest;
anotherPrimtive;

return;

e inList.c (executes primitives)

(*prinFunction[NUM PRI M TI VES]) (struct PRI M DATA *);

execPrim(U NT32 *index, U NT32 *|istDone, U NT32 *outputData) {

mo_@_./\w@_._mm%%: mHead, (struct MSG HEAD *)prinList.rwPtr);

*i ndex = prinHead. i ndex;

prinDat a. pri BodyLength = prinHead.length - (SIZEOF(struct MSG HEAD));
pri nDat a. pri BodyPtr

pri nDat a. r epBodyLengt h
pri nDat a. r epBodyPt r

pri nDat a. r epBuf f End

primList.rwPtr + (SIZEOF(struct MSG HEAD));
0;

repList.rwPtr + (SIZEOF(struct NMSG HEAD));
(voi d *)((REP_BUFF_BASE) + (REP _BUFF_SI ZE)):

.m:oq = prinfFunction[prinHead.id](&prinData);

Damon Fasching, The University of Wisconsin, Madison

10

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

e primFuncts.c .
I nt echo(struct PRI M DATA *prinData) {

U NT32 counter;
for (counter = 0; counter < prinData->priBodyLength; ++counter) {
*(prinDat a- >repBodyPtr + counter) =
*(prinData->pri BodyPtr + counter);
}
pri nDat a- >r epBodyLengt h = pri nDat a- >pr i BodyLengt h;
return SUCCESS;

I nt menoryTest (struct PRI M DATA *prinData) {
SI NT32 r et ur nCode;
U NT32 counter;
U NT8 val ue *addr;
struct MEMIN *nenln
struct MEM QUT *nenQut
ret urnCode = SUCCESS;
srand(cl ock());
value = rand() & OxFF;
menQut - >nunkrrors = O,

(struct MEMIN *)prinData->pri BodyPtr;
(struct MEM QUT *)pri nDat a- >r epBodyPtr;

for (addr = nmem n->start Address; addr <= nmem n->endAddr ess; ++addr)
for (counter = 0; counter < nenln->nunReps; ++counter) {
*addr = val ue+l;
if (*addr != val ue) ++nmenQut->nunkrrors;

}
pri nmDat a- >r epBodyLength = 1;
return returnCode;

Damon Fasching, The University of Wisconsin, Madison

11

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

primitive execution
e Adding a primitive requires the following code.

1. primParams.h

Define mnemonic and (optionally) structures for the host and the DSP.

#define YET_ANOTHER PRIM TIVE (1 + (ANOTHER PRI M Tl VE))
struct YAPIN{ . . . }; [* o_o:o:m_ */
struct YAP. QUT { . . . }; [* optional */

#defi ne NUM PRI M Tl VES (1 + (YET_ANOTHER PRI M TI VE))

Add the function prototype.
int yetAnotherPrimtive(struct PRI M DATA *);

2. primFuncts.c

In assignFunctPtrs, add the line
pri nFunction][YET_ANOTHER PRIM TIVE] = yet AnotherPrimtive;

Then write the routine(s).

int yetAnotherPrimtive(struct PRI M DATA *prinData) ({
return anl nt eger;

}

Damon Fasching, The University of Wisconsin, Madison 12

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

Error handling

e If an error condition is detected during the execution of a function about which
a human user should be informed

— An ASCII formatted message describing the error, including the file name, the line number
and the function name is written to the error buffer.

— If the error is sufficiently severe the function is aborted. Control is returned to the calling
function with a fatal error code.

— If the error is not fatal function execution continues. When completed, control is returned
to the calling function with a non-fatal error code.

e |If function receives an error return from a lower level function

— An ASCII formatted message with the error code, the file name, the line number and the
function names is appended to the error buffer.

— If the error is sufficiently severe the function is aborted. Control is returned to the calling
function with a fatal error code.

— Otherwise, function execution continues. When completed, control is returned to the calling
function with a non-fatal error code.

¢ In this way a complete calling stack and description of the error is built up in the
error buffer.

Damon Fasching, The University of Wisconsin, Madison 13

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

e The next time the error buffer state machine is called, this information will be
passed to the host processor. The information may be logged or sent to an
online display if severity dictates.

e Two small service routines provide a uniform interface between all functions
and the error buffer. This should facilitate error parsing by the host processor.

e This is not the final word on error handling. For example an error which is “fatal”
from the point of view of one function may not be fatal from the point of view of
the function which called it. A “retry” level has been suggested.

Damon Fasching, The University of Wisconsin, Madison 14

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

—_— —_

‘booted/initialized>

—_— -

primtive

primitive

if(readRgst)
@‘ setTxtBUfNE(buffer, 0) WAITING

readCRTxtBuffRR(buffer,&readRqst) readCRTxtBuffRR(buffer,&readRqst)

txtBufferStateMachine(buffer)

Damon Fasching, The University of Wisconsin, Madison 15

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

DSP environments: ROD vs. Development

1. ROD
e Communication bits are registers in the ROD resources interface FPGA.

e Message buffers reside in SDRAM at CE2 and CE3 of DSP external memory interface.
e Host writes prim list, reads reply and text buffers, sets bits in the VME command register.
e DSP reads prim list, writes reply and text buffers, sets bits in the DSP status register.
2. Tl evaluation module under host control (NI Lab Windows)
e Communication bits are mailboxes in SDRAM, requires a single address change.
e Message buffers reside in SDRAM at CE2 and CE3 of DSP external memory interface.
e Host writes prim list, reads reply and text buffers, sets bits in the VME command “register.”
e DSP reads prim list, writes reply and text buffers, sets bits in the DSP status “register”.
3. Tl evaluation module stand-alone (TI Code Composer)
e Communication bits are mailboxes in SDRAM.
e Message buffers reside in SDRAM at CE2 and CE3 of DSP external memory interface.

e DSP writes prim list, reads reply and text buffers, sets bits in the VME command register;
l.e. the host is simulated.

e DSP reads prim list, writes reply and text buffers, sets bits in the DSP status register.

= The latter cases are each turned on via a single preprocessor directive.
= Only a small portion of the very highest level DSP code is altered.

Damon Fasching, The University of Wisconsin, Madison 16

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

A sample of primitives from the protocol document

1. MasterDsp primitives

(a) Set CAL and L1A sequence parameters
This will be the method for setting parameters of the L1A and CAL com-

mands for straightforward calibration and noise runs. A sequence is either
CAL-L1A, CAL-L1A-L1A, L1A, or L1A-L1A. During the execution of these

sequences, initiated by the "Issue CAL and L1A sequences” primitive below,
the interval between the sequences and the interval between the individual
commands of a sequence are fixed by the following attributes.

Attributes:

I. number of sequences

ii. interval between sequences (End of sequence n to start of sequence n+1)
lii. interval between CAL pulse and 1st L1A. (0 = no CAL pulse)

Iv. interval between 1st L1A and 2nd L1A (0 = no 2nd L1A)

V. event type (to trap data in proper DSP)

(b) Issue CAL and L1A sequences
This primitive causes the number and type of sequences described by the
last "Set CAL and L1A sequence parameters” to be issued. It is assumed

that the CAL and L1A sequence parameters, the data path, _nm0_<_ZD_<_>m_.—

Damon Fasching, The University of Wisconsin, Madison 17

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

the SlaveDSPs, and the detector mounted electronics have been set up
prior to issuing this primitive.

2. SlaveDsp primitives
(a) Setup for calibration
Attributes:

I. fitting function
A. 1: no fit, keep raw histograms
B. 2: S curve
C. 3-9: reserved
D. 10+n: nth order polynomial
li. X axis source (for pixels address mapping needs to be worked out)
A. element number
B. element number + TOT (pixels only)
C. element number + control variable (e.g. DAC step)
lii. 'Y axis maximum
A. 1: 1 byte (256 counts)
B. 2: 2 bytes (65K counts)

Damon Fasching, The University of Wisconsin, Madison 18

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

(b) Setup for error counter and event synchronization correction
Attributes:

I. resynchronization mode
A. 1. off (do not perform resynchronization)
B. 2: 0on

ii. alarm threshold (may want to define by error type)

(c) Setup for event trapping (monitoring events)
(d) Setup for occupancy plots
Attributes:

I. Y axis maximum
A. 1: 1 byte (256 counts)
B. 2: 2 bytes (65K counts)
li. number of events (-1 = accumulate same number as in the reference occupancy his-
tograms)

iii. alarm tolerance

A. -1: send raw hists (do not compare with reference)
B. s: alarm at s sigma deviation from reference

Damon Fasching, The University of Wisconsin, Madison 19

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

(e) Accumulate reference occupancy histogram
Attributes:

I. Y axis maximum
A. 1: 1 byte (256 counts)
B. 2: 2 bytes (65K counts)
ii. number of events
iii. date
(f) Read parameters (Y axis maximum, number of events, date) of current

reference occupancy histograms
(g) Process calibration histograms

Attributes:

I. fitting function

A. 2: Scurve

B. 3-9: reserved

C. 10+n: nth order polynomial

li. scan parameters (This should include things like the number of pulses per point, the
axis values of the points, etc. From the host side, it may be easier if these parameters
are sent down when the scan is being set up rather than when it is finished. People
involved in that end of things should comment.)

Damon Fasching, The University of Wisconsin, Madison 20

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

(h) Clear histogram(s)
Attributes:

I. histogram number (-1 to clear all)

Damon Fasching, The University of Wisconsin, Madison 21

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

Software Status

e host-masterDSP and masterDSP-slaveDSP communication protocol designed

e communication code written (state machines and buffer management)and testec
between host and masterDSP

— DSP side tested stand-alone using an evaluation module, EVM, from Texas Instruments
with the host side simulated. The EVM is a PCI bus card available from TI. It is designed
around the target DSP and facilitates code development, benchmarking, etc.

— host side tested with up to 20 simulated DSPs (L. Tomasek’s presentation)
— host and DSP side tested together with a single DSP EVM (L. Tomasek’s presentation)

e standard error handling procedure designed and implemented
e standard procedure for including primitive functions designed and implemented

e list of primitive functions has been written down and iterated

Damon Fasching, The University of Wisconsin, Madison 22

ROD DSP software status ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

Next Steps

e implementation of DSP functionality ongoing

— runtime and calibration: coordination of tasks in master DSP

— error diagnostics, histogram and fit routines in slave DSPs

— study flow of data which is “off the main path”, e.g. monitoring data @ 1 kHz.
— fleshing out and implementation of primitive functions

— slave DSP code development and benchmarking

e test stand development through end of August

e fabrication and loading of boards through mid September

e stand-alone ROD tests through ~ end September (in parallel with loading)

o off-detector system test during November in the UK (one month of cushion)
e user evaluation in the following months, depending on availability of modules
e provide pixel and SCT local DAQ (ROD crate DAQ)

Damon Fasching, The University of Wisconsin, Madison 23

ROD DSP software status

ATLAS SCT and pixel off-detector electronics PDR, 31 July 2000

— meeting minutes

some web references

e http://www-wisconsin.cern.ch/~atlas/off-detector/off-detector.html

e http://www-wisconsin.cern.ch/~atsiod/shared.html
— coding rules document

— message protocol document, includes current iteration of primitives

Damon Fasching, The University of Wisconsin, Madison

24

